Data Visualization...what it is and why it matters

Amanda Bissell, UNM Evaluation Lab

Why Visualize Data?

Data Visualization is a tool that can help us explore complex patterns in large quantities of data that cannot be directly perceived.

History of Data Visualization

Hx of Data Visualization: 17-1800's

William Playfair

Figure 1 Graphical representation of the balance of trade between England and America. From J. Alonso, 2011 "A short visual history of charts and graphs."

John Snow

Figure 2 The map of all Cholera cases recorded by John Snow. From A. Kukaswadia, 2013 "John Snow – The First Epidemiologist."

- Playfair was the first to use line, bar, area and pie charts as visual symbols to represent data
- Snow's use of a dot map to show geographic densities of cholera victims lead to a new understanding of the spread of disease

Hx of Data Visualization: 17-1800's

Charles Joseph Minard

- Minard's depiction of Napoleon's advance and retreat on Moscow is one of the first data visualization dashboards
- It represents several types and dimensions of data in multiple, related charts.

Figure 3 Statistical graph of Napoleon's March in the War of 1812. From E.Tufte, nd "Napoleon's March."

Hx of Data Visualization: 17-1800's

Data Visualization Today

- The complexity and variety of graphic symbols often rivals that of the data itself.
- Interactivity adds yet another dimension
- How are we able to perceive and synthesize so much information?

Figure 4 Information panels on several aspects of Malaria. From K.Cheng, 2013 "Scientific Data Visualization: Understanding Malaria."

Human Perception of Visual Information

Preattentive Processing

- The eye is drawn to certain features and patterns that stand out or pop
- Information is subconsciously obtained from our environment before being attentively processed (or not)
- Pattern recognition

How many 7's do you see?

987346721749001238478590 874659687163354092394387 590972857102948571836501

987346721749001238478590 874659687163354092394387 590972857102948571836501

98**7**346**7**21**7**490012384**7**8590 8**7**465968**7**16335409239438**7** 5909**7**285**7**1029485**7**1836501

Saliency: Visual Features that Affect Preattentive Processing

Figure 5 Examples of salient display. From G. Fitzsimmons, 2012 "User Interface Design: How to get human visual attention."

Grouping: Visual Features that Affect Preattentive Processing...the Gestalt Principles

Figure 6 Gestalt Principles. From T. Taylor, 2014 "How to Use the Gestalt Principles for Visual Storytelling #PoDV."

Step 1: Is a Visualization Necessary?

- Are you illustrating complex patterns and/or large quantities of data?
- Are you answering a question, making an argument or telling a story?
- Will a visualization be more informative than a simple table or text?

Step 2: Who is your audience?

- How much does your audience know about the research subject?
- How much does your audience know about data analysis?
- What are the norms or expectations of this field?

Step 3: What do you want to show your audience?

Want to?	Solution
Compare Values	Bar/Column Chart
Show distribution of values	Scatter Plot
Show trends in distribution of values	Line Chart
Show a percentage or proportional data	Pie Chart; Stacked Bar Chart
Show three variables at once	Bubble Chart

 There are many, many types of charts to choose from.

- Some require specialized knowledge to interpret correctly.
- Some can be misleading.
- Always keep you audience in mind when making a decision.

SCENARIO 1

You are a **journalist for a national paper**. You are writing an article about **crime in the U.S.**

Some believe that crime is on the rise, while others argue that it has diminished over the years.

The data tells a different story depending on the type of crime, geographic area and time period that is being studied.

SCENARIO 2

You are a social media developer for an ad agency. You provide one of your clients a weekly report on brand activity.

Mentions of your client's brand on Twitter have decreased by 32% since the previous week.

Sales have remained unchanged.

SCENARIO 3

You are a researcher studying Parkinson's disease.

You are publishing the results of a **study that uses microarrays** to measure gene expression levels in mice.

Your data set includes over 9,0000 genes.

- 1. Should a visualization be used in this scenario?
- 2. Given the audience and the data, what is the best visualization to use?

<u>Accuracy</u>

Graphical Perception

- 1984 experiments by McGill and Cleveland rank how accurately people assess graphic depictions of data
- The rankings are useful but not uncompromising.
- Context and audience should also be considered.

Figure 7 Accuracy Ranking. From N. Yau, 2007. "Graphical perception – learn the fundamentals first."

- 1. Which chart looks best to you?
- 2. Which chart makes it easier to judge the difference between B and C?
- 3. Which Chart is more effective at communicating accurately?

When using column/bar charts, always start the scale at 0.

- The column for 1996 appears to be twice the height of the column for 1993.
- The axis labels tell us the difference between the two is only 2.5% (65% versus 62.5%).
- This is a common distortion tactic.

Figure 8 http://junkcharts.typepad.com/junk charts/2014/04/when-to-use-the-start-at-zero-rule-.html

Make sure scale is consistent and honest.

Same data with three different scales

Different scales in one graph

Figure 9 Different Scales. From J. Camoes, 2013. "Chart redraw: Troops Vs. Cost (Time Magazine)."

With line graphs, consider using a separate chart to demonstrate differences.

- Human perception defaults to the shortest distance between two lines rather than the vertical distance.
- A chart of the difference alone can be more accurate and informative.

Use a bubble chart if your data has at least three data series that each contain a set of values.

- The human visual system naturally experiences a disk's size in terms of its area. Thus bubbles should be scaled according to area, not diameter.
- If you aren't showing three variables at one time, use a bar chart or scatter plot.

Estimated earnings & size of workforce by gender, employment status & age

Figure 10 Bubble Charts. http://plotly18.rssing.com/chan-55892197/all_p2.html

Use 3D charts for a reason.

(there is almost never a reason)

Pay attention to text orientation

BAD

BETTER

BEST!

Watch your data to ink ratio:

Ink used to directly encode data values Total ink used in the visualization

- Use only graphical elements hat are necessary for the chart to be easily read by your audience.
- Once you've completed a visualization, check to see if there's anything that can be removed.

Calories per 100g

Potato

Chips

Bacon

700 600

500 400

300

100

0

French

Fries

Chili Dog

Pizza

Classic Trick of the Trade: The Squint Test

Which elements **pop out** and catch your eye?

Are these the elements you want to draw attention to?

Figure 11 The Squint Test.

https://blog.xlcubed.com/2008/08/the-dashbord-squint-test/

Creativity is good...but clarity is key

Iraq's bloody toll

Figure 12 http://www.simonscarr.com/iraqs-bloody-toll/

Gun deaths in Florida

Number of murders committed using firearms

Figure 13 http://www.businessinsider.com/gun-deaths-in-florida-increased-with-stand-your-ground-2014-2

For Comparison

Figure 14 How you present data https://www.infoworld.com/article/3088166/data-analytics/why-how-to-lie-with-statistics-did-us-a-disservice.html

Working With Color

Color

Color isn't always necessary

- Many visualization tools add color by default.
- Often a label on its own is enough
- Color can be useful to distinguish groups or intervals.

Color

Many people are color blind.

- Many people affected by color blindness have diminished ability to differentiate red and green.
- Don't use color schemes that involve both.

 Vary the lightness/darkness/saturation of colors as well. Check by printing or viewing in grayscale.

Figure 15 Color Blindness https://24ways.org/2012/colour-accessibility/

Color

Resources for working with color

- **Color Brewer** (colorbrewer2.org) helps you select from a range of color scales that are friendly to color blindness, printers, etc.
- **Coblis** (http://www.color-blindness.com/coblis-color-blindness-simulator/) allows you to upload images and displays how they will appear to someone who is colorblind.

Marilyn Monroe by Andy Warhol

Figure 16 http://www.colourlovers.com/web/blog/2008/07/24/as-seen-by-the-color-blind

Color

Color isn't always the best way to group data

- Often the same colors are perceived and named differently, making it difficult to use color as a guide for reference and discussion.
- Color Palette Analyzer

 (vis.stanford.edu/color-names/analyzer)
 shows how often names for different
 colors overlap.
- Alternative grouping methods include gestalt principles described earlier as well as trellis charts (aka panel charts or small multiples)

Scatter Plot

Bar Charts

VS

Line Charts

Improving Visualizations

Which incredible Canadian woman should be featured on the \$20 bill?

How can this visualization be improved?

Figure 17 https://www.cbc.ca/radio/dnto/just-get-the-thing-done-and-let-them-howl-nellie-mcclung-1.3418924/which-incredible-canadian-woman-should-be-featured-on-the-20-bill-1.3419070

Which Incredible Canadian Woman Should Be Featured On The \$20 Bill?

Colorado Fatal Crash by Month Since 2002

How can this visualization be improved?

Colorado Fatal Crashes by Month since 2002

Colorado Fatal Crashes in 2018

	LOWEST YEAR	HIGHEST YEAR
JAN	2010	2002
FEB	2011	2004
MAR	2010	2004
APR	2011	2003
MAY	2010	2002
JUN	2009	2002
JUL	2010	2004
AUG	2011	2002
SEP	2014	2015
ОСТ	2013	2002
NOV	2013	2002
DEC	2015/16	2005

Key Concepts

- Visualizations are most informative when complex data is used to tell a story.
- Consider your audience at all times
- Certain graphical elements can be more accurately perceived than others.
- Avoid mixing and manipulating scales. Be honest with your presentation.
- Consider which elements of your visualization "pop out" and attract the most attention.
- Avoid color schemes that conflict with red-green blindness.
- Consider whether multiple charts will be more informative or easier to read than a single chart.
- Clarity is key.

Resources

Desktop

- Tableau
- Microsoft Excel

Web-Based

- Plotly
- Highcharts Cloud

→ Share 📥 🐧 🛈 🖸

References

Alonso, J. (2011, February). A short visual history of charts and graphs. Retrieved from https://seeingcomplexity.wordpress.com/2011/02/03/a-short-visual-history-of-charts-and-graphs/

Camoes, J. (2013). Chart redraw: Troops Vs. Cost (Time Magazine). Retrieved from https://excelcharts.com/redraw-troops-vs-cost-time-magazine/

CBC Radio (2016). Which incredible Canadian woman should be featured on the \$20 bill? Retrieved from https://www.cbc.ca/radio/dnto/just-get-the-thing-done-and-let-them-howl-nellie-mcclung-1.3418924/which-incredible-canadian-woman-should-be-featured-on-the-20-bill-1.3419070

Cheng, K. (2013, September). Scientific Data Visualization: Understanding Malaria. Retrieved from http://arcadenw.org/article/scientific-visualization

Coady, G. (2012). Colour Accessibility. Retrieved from https://24ways.org/2012/colour-accessibility/

Colorado Department of Transportation (2018). "Colorado Fatal Crashes since 2002 "https://www.codot.gov/library/traffic/safety-crash-data/fatal-crash-data-city-county/historical_fatals.pdf/view

Cotgrave, A. (2016). Living with Data. Retrieved from https://www.infoworld.com/article/3088166/data-analytics/why-how-to-lie-with-statistics-did-us-a-disservice.html

Clement, D. (2006) – Spiderchart2. Own work by the original uploader, Public Domain, https://commons.wikimedia.org/w/index.php?curid=37046625

Engel, P. (2014). "This Chart Shows An Alarming Rise In Florida Gun Deaths After 'Stand Your Ground' Was Enacted". Retrieved from https://www.businessinsider.com/gun-deaths-in-florida-increased-with-stand-your-ground-2014-2

References Continued

Evade (2008). As Seen By The Color Blind. Retrieved from http://www.colourlovers.com/web/blog/2008/07/24/as-seen-by-the-color-blind

Fitzsimmons, G. (2013, May). User Interface Design: How to get human visual attention. Retrieved from http://blog.soton.ac.uk/webbers/2012/05/06/user-interface-design-how-to-get-human-visual-attention-by-gemma-fitzsimmons/

Kukaswadia, A. (2013, March). John Snow – The First Epidemiologist. Retrieved from http://blogs.plos.org/publichealth/2013/03/11/john-snow-the-first-epidemiologist/

Plotly Blog (no date). Retrieved from http://plotly18.rssing.com/chan-55892197/all_p2.html

Scarr, S. (2011). Iraq's bloody toll. Retrieved from http://www.simonscarr.com/iraqs-bloody-toll/

Taylor, T. (2014). How to Use the Gestalt Principles for Visual Storytelling #PoDV. Retrieved from http://www.fusioncharts.com/blog/2014/03/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/

Tufte, E. (no date). Napoleon's March. Retrieved from https://www.edwardtufte.com/tufte/posters

XLCubed Blog (2008). The Dashboard Squint Test. Retrieved from https://blog.xlcubed.com/2008/08/the-dashbord-squint-test/

Yau, N. (2010). "Graphical perception – learn the fundamentals first." Retrieved from https://flowingdata.com/2010/03/20/graphical-perception-learn-the-fundamentals-first/